Virtual High Intensity Radiated Field (HIRF) Testing

3DEXPERIENCE[®]

Motivation I

- ► New A/C concepts (fly-by-wire, all electric aircraft, ...)
- ► Increasing ...
 - > A/C number of functions performed by electronic systems
 - Susceptibility of A/C to EM environments (HIRF, Lightning, ESD, NEMP, HPM)
- ► Increasing ...
 - > A/C safety requirements
 - \triangleright A/C development time & cost
 - > A/C testing time & cost to comply with certification requirements

Motivation II

- ► Computational electromagnetics (CEM) to ...
 - > Support, improve & reduce A/C testing
 - > Determine the EM environments of A/C electronic systems
 - \triangleright Be used for design, upgrade & design certification / qualification of A/C
- ► Virtual EMC test methodology for large multiscale problems ...
 - ▷ In Dassault Systemes SIMULIA CST Studio Suite®
 - > Applied to Evektor's EV-55 Outback plane in a HIRF environment

Outline

►HIRF

Virtual EMC / HIRF test
Aircraft application
Summary

HIRF I

High-intensity / high energy radiated fields (HIRF / HERF)

- Severe external EM environment due to high power RF sources
 - \rhd TV & Radio
 - \triangleright Radar
 - > Satellite communication with ground systems, ships or aircrafts
- Impact (threats inside fuselage)
 - ▷ Induced currents in A/C cables
 - \triangleright EM field penetration into A/C fuselage

Source: Maria Lindback, Optimisation of aircraft transfer function measurements, M.Sc. Thesis, Lund University, in coop. with Airbus France, 2004

HIRF II

Frequency division of HIRF

Low frequency band 10kHz — 50MHz

- A/C acts as antenna
- Induced currents in A/C cables
- A/C electronics pot. affected by excessive current levels

Medium frequency band 30MHz — 400MHz

- Induced currents in A/C cables
- EM Field penetration into A/C fuselage
- A/C electronics pot. affected by excessive current and EM field levels inside fuselage

High frequency band 100MHz — 18/40GHz

- EM Field penetration into A/C fuselage
- A/C electronics pot. affected by excessive EM field levels inside fuselage

Source: Maria Lindback, Optimisation of aircraft transfer function measurements, M.Sc. Thesis, Lund University, in coop. with Airbus France, 2004

HIRF III

HIRF test objective

- ► To determine transfer functions
- ► Transfer function is
 - > Induced currents/penetrated EM field in A/C over external EM field
 - ▶ 10kHz 400MHz: 20 log |I/E_{ext}| in dBA(V/m)
 - ▶ 100MHz 18/40GHz: 20 log |Eint/Eext| in dB
- ▶ Impact of an external HIRF EM field to A/C electronics from:

Transfer function + external HIRF EM field

Source: Maria Lindback, Optimisation of aircraft transfer function measurements, M.Sc. Thesis, Lund University, in coop. with Airbus France, 2004

:: 3DS_Document_2019

Virtual EMC / HIRF Test I

Objective

- ▷ To support, improve & reduce A/C HIRF testing
- ▷ To determine the EM environments of A/C electronic systems
- ► To determine transfer functions by computational electromagnetics
- ► To support the R&D in Europe related to A/C EMC
- CST partnered in the European research project High Intensity Radiated Field Synthetic Environment (2007-2013)

The presented work has received funding from the European community's 7th framework program. (FP7/2007-2013) under grant agreement no 205294 (HIRF SE project).

Virtual EMC / HIRF Test II

► Pre-Processing

CAD import & healingModel setup & mesh generation

- **EM** Simulation
 - ▷ TD-HPC-Simulation▷ FD-HPC-Simulation

► Post-Processing

▷ 2D / 3D field processing▷ Voltages & currents

Physical aircraft

Source: www.evektor.cz

- EV-55 Outback (twin turboprop)
- Wing span = 16.10m
- Overall length = 14.21m
- Height = 5.13m

Virtual aircraft I

Morphed version of Evektor's EV-55 Outback plane

Used CAD tool: CATIA v.5.18

Aircraft parts:

- Fuselage
- Instrument panel
- Pilot and passenger seats
- Upholstery

Virtual aircraft II

Investigated Geometries

Full-EV55 without Seats Geometry Full-EV55 with Seats Geometry

Virtual aircraft III

Wiring

Pre-Processing I

Model setup I

- Material properties
- RF sources (plane wave, field sources, ...)
- Boundary conditions (0PEN, PEC, ...)
- Frequency range: up to 1 GHz

Open boundary (free space)

Pre-Processing II

Model setup II

STP4

STP1

For Post-Processing

- Field monitors (*E* and *H* fields, surface currents, ...)
- Broadband current and voltage monitors
- Broadband *E* field and *H* fie

Magnetic field probe on fuselage skin

Electric field probe in fuselage

VTP4

Current monitor on wiring

Pre-Processing III

Mesh generation (i)

Mesh type is dependent on numerical algorithm (FIT, FEM, IE)

Structured Mesh

Hexahedral Mesh

- Transient simulations
- Less common: Frequency domain simulations

Un-Structured Meshes

- **Tetrahedral Mesh**
- Frequency domain simulations (general purpose 3D F-solver)

Surface Mesh

 Integral equation methods

Pre-Processing IV

Mesh generation (ii) — PBA mesh

Hexahedral PBA mesh @ 150 MHz (min. 10 lines per wavelength)

SIMULIA CST's Perfectly Boundary Approximation (PBA) and Thin Sheet Technology (TST) allow a very good model resolution of a relatively coarse mesh.

Material based mesh refinement for upholstery

Pre-Processing V

Mesh generation (iii) — Staircase mesh Hexahedral staircase mesh @ 150 MHz (min. 10 lines per wavelength)

Drawbacks

- Poor spatial resolution
- Smaller mesh steps required
- Smaller time steps required
- Increase in CPU time
- Increase in memory requirement

EM Simulation I

Numerical Solvers

General purpose solver 3D-volume		
T	Transient	 large problems broadband arbitrary time signals
F	Frequency Domain	 narrow band / single frequency small problems periodic structures with Floquet port modes

Special solver 3D-surface: large open metallic structures

Integral Equation • large structures • dominated by metal

CST Studio Suite® Time Domain solver was used.

EM Simulation II

CPU Multithreading

Distributed Computing

GPU Computing

MPI Computing

Frequency division of HIRF

Source: Maria Lindback, Optimisation of aircraft transfer function measurements, M.Sc. Thesis, Lund University, in coop. with Airbus France, 2004

Post-Processing II

- ► Magnetic field strength @ 70MHz (MF)
- Low EM field penetration into fuselage
- A/C electronics affected by excessive induced currents in A/C cables

Post-Processing III

- ► Magnetic field strength @ 1000MHz (HF)
- High EM field penetration into fuselage
- A/C electronics affected by excessive EM field levels inside fuselage

www.evektor.cz

Post-Processing IV

- ► Surface current @ 70MHz (MF)
- Low EM field penetration into fuselage
- A/C acts as an antenna
- Strong surface currents on fuselage

Post-Processing V

- ► Surface current @ 1000MHz (HF)
- High EM field penetration into fuselage
- Low surface currents on fuselage

EM fields @ field probes

Magnetic field probe in fuselage Electric field probe on fuselage skin

> LF: Low field penetration MF / HF: High field penetration

Post-Processing VII

E-field @ field probe VTP3 inside fuselage

Source: 1 V/m plane wave [Magnitude] 100 +-----E (VTP3) with Seats E (VTP3) without Seats 10 0.1 VTP3 0.01 0.001 0.001 0.01 0.03 0.1 0.2 Frequency / GHz

/ V/m

ш

Post-Processing VIII

E-field probe result up to 6.5 GHz

evek

Virtual EMC / HIRF tests in Dassault Systemes SIMULIA CST Studio Suite[®] support, improve & reduce A/C HIRF testing!

