Simulations for Optical, Photonic, and Plasmonic Applications using Dassault Systemes SIMULIA CST Studio Suite®

3DEXPERIENCE°

Agenda

► Introduction

- > About Dassault Systemes
- $\,\triangleright\,$ Technology offering for optical and photonics simulations
 - ► Solver options and selection
 - Materials
 - ► Boundaries
 - ► Meshing
 - Results postprocessing

► Examples

- ▷ BxDF Calculation
- ▷ Photonic Crystal Microcavity
- Metal-Insulator-Metal Plasmon Coupling Diffraction Gratings
- ▷ Silicon Waveguide Based TE Mode Converter
- \triangleright Convex Microlens Simulation
- ► Conclusion

Dassault Systèmes | The 3DEXPERIENCE Company

a **Scientific** company

Combining **Science**, **Technology** and **Art** for a sustainable society

17,000 passionate people

- 130 nationalities
- 181 sites
- One global R&D / 64 labs

250,000 customers

- 11 industries in 140 countries
- 25 million users
- Game-changing 3DEXPERIENCE solutions

12,600 partners

- Software, Technology & Architecture
- Content & Online Services
- Sales
- Consulting & System
 Integrators (C&SI)
- Education
- Research

Long-term driven

- Majority shareholder control
- Revenue: €3,488 million*
- Operating margin: 31,8%*

© Dassault Systèm

Building blocks of Multiphysics & Multiscale vision

Structures	Abaqus	Electromagnetics Photonics	CST Studio Suite Opera
Multibody	Simpack	Fluids	PowerFLOW XFlow 3DEXPERIENCE Flo
Durability	fe-safe	Automation	Isight
Vibro-acoustics	Wave6	Optimization	Tosca 🌔 💮

Technology Offering SIMULIA CST Studio Suite

The best simulation method depends upon the application

Dassault Systemes SIMULIA CST Studio Suite® offers a range of methods in a single package

User is guided to the most appropriate method(s)

Optical Applications in CST Studio Suite

Optical Applications in CST Studio Suite

Configuration Wizard

Creating the Geometry

- Built-in CAD/scripting environment
- ► Import CAD or EDA data:

 - \triangleright GDSII
 - ⊳ DXF
 - ⊳ STEP
 - $\rhd \dots$ and many more
- ► Direct links:
 - > 3DEXPERIENCE Power'By
 - ▷ SOLIDWORKS
 - ▷ Luceda IPKISS
 - \triangleright CREO

Material Assignment

CST Studio Suite comes with a number of predefined materials for photonic and plasmonic applications

Typically, these are higher order dispersive materials based on standard text books

Use filter	Material: *optical*		Type: <all></all>
Material	/	Туре	Location
Aluminum	(optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Copper (optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Gold (Joh	inson) (optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Gold (Pali	k) (optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
🔶 Indium Ti	n Oxide (optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Nickel (op	otical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Rexolite	(optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Silicon (o	ptical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Silicon An	norphous (optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Silicon Cr	ystalline (optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Silicon Die	oxide (optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Silicon Nit	tride (optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Silver (Jo	hnson) (optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
Silver (Pa	lik) (optical)	Normal	C:\Program Files (x86)\CST STUDIO SUITE 2014\Library
laterial to imp	ort		Find Rename Delete
Vame:	Aluminum (ontical)		
Numer	Adminian (opacal)		
Type:	Normal		
Material sets:	Default		
Attributes:			Description:
Material Set Type = № Disp. eps. = Mue = 1	= Default Normal Nth order model (fit): N=7	J	Chemical symbol: Al Frequency: 150 - 2900 THz Wavelength: 100 m - 2 um Edward D. Palik, Handbook of Optical Constants of Solids, vol. 1, 1985

Material Data: Causal Fit

► Dispersive data need to satisfy Kramers-Kronig to ensure causality

CST Studio Suite offers a number of causal dispersion models (Drude, Lorentz, etc.)

► Generalized nth order model to automatically fit tabulated data:

$$\varepsilon(\omega) = \varepsilon_{\infty} + \sum_{n=1}^{N} \frac{\beta_{0,n}}{\alpha_{0,n} + j\omega} + \sum_{n=1}^{M} \frac{\gamma_{0,n} + j\omega\gamma_{1,n}}{\delta_{0,n} + j\omega\delta_{1,n} - \omega^2}$$

Material Data Resource: www.refractiveindex.info

		🔄 🖬 🖉 refractiveindex.info/?shelf=main&book=Si&page=Salzberg 🔍 C 🔀 - Google 🖉 🏠 🖨 🖡
Mesh Global Properties - List Propertic Update Edit	Run Macro	Optical constants of Si (Silicon) Salzberg and Villa 1957 - n 1.36-11 μm, 26 °C Wavelength: 2.4373 μm (1.357 - 11.04) line select unit converter
	Calculate Construct File Matching	Refractive index [i] 3.51 $n = 3.4407$ 3.5 3.5 Salzberg and Villa 1957 - n 1.36-11 µm, 26 °C
Create Cole-Cole Model Material Create Drude Material for Optical Applications Create Drude Material for Plasma Applications Create Full Tensor Material Create General nth Order Material Create Graphene Material for Optical Applications	Materials Parameter Report and Results Solver Wizard	Other optical constants 3.48 Chromatic dispersion [i] $dn/d\lambda = -0.020208 \ \mu m^{-1}$ 3.47 Group velocity dispersion [i] GVD = 649.31 fs ² /mm 3.45 D = -205.89 ps/(nm km) 3.45
Create Tabulated Surface Impedance Material Define Human Material Properties Import CSV Data from refractive index.info	Edit Macro Open VBA Make VBA Import VB, Edit / Mov	[CSV - comma separated] 3.44 3.44 3.43 3.42 3.41 2.5 5 7.5 10 Wavelength, µm ≡

PML Boundaries and Symmetry Planes

State-of-the-art PML technology with extremely low reflection

Reduce simulated model down to 1/2, 1/4, or 1/8. Results will be automatically mapped to full model for visualization and post processing.

Meshing

► Automatic hexahedral and tetrahedral mesh generation

4th generation conformal mesh PBA (1st generation in 1998)

Higher order curved tetrahedral mesh

- ► T and F represent the most commonly used solvers
- ► Both will provide highly accurate full-wave results for any structure
- Depending upon the application, one might be faster than the other:
 D provides broadband results in a single solver run
 - ⊳ FD favorable for high Q values
- Memory requirements scale differently
 - Linear memory scaling of TD (based on FIT/FDTD/TLM) makes it suitable for models that are large compared to the wavelength

SIMULIA CST Studio Suite® Acceleration Techniques

CPU Multithreading

Distributed Computing

GPU Computing

MPI Computing

Result Handling

There are different types of results in CST Studio Suite:

Result Navigator

- ► A unique "Run ID" identifies each solver run.
 - ▷ The corresponding parameter sets are shown.
- ► The Result Navigator allows to show only some of the curves.
- ► Filter options are available, too

Post Processing Templates

Post processing templates provide a convenient way to derive values from the standard results and 3D field results:

Result Templates

CST Studio Suite for Accurate Component-Level Simulation

Example: BxDF Calculation

BSDF = BRDF + BTDF

By Jurohi (talk) (Uploads) - Own work, CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=4989431

Bidirectional Reflectance Distribution Function

$$f_r(\omega_i, \omega_r) = \frac{\mathrm{d}L_r(\omega_r)}{\mathrm{d}E_i(\omega_i)} = \frac{\mathrm{d}L_r(\omega_r)}{L_i(\omega_i)\cos\theta_i\mathrm{d}\omega_i}$$

L = Radiance

E = Irradiance

 Θ = Angle between incident light and surface normal

 ω = Solid angle for incident/reflected light

https://commons.wikimedia.org/w/index.php?curid=6404479

Example Geometry

- ► The model under investigation is a 10um x 10um silicon substrate
- ► Random surface roughness with max distortion height as parameter

3DS Docur

1/2020

Solver Setup and GPU Acceleration

Peak memory used	(kB) Free physical memory (kB) At begin Minimum
CAD properation 16920 Matrices calc. 26301757 Solver run total 33538548	258982268 258982268 258962890 232424804 259006976 228098060
Solver Statistics:	
Hardware: Computer name:	
Number of CPU chreads. hardware type: GPU memory usage: Number of moch colle:	2 CUDA GPU solvers, Kepler/Maxwell approx. 30 %
Excitation duration: Calculation time for excitation: Number of calculated pulse widths: Steady state accuracy limit: Simulated number of time steps: Maximum number of time steps: Time step width: without subcycles: used:	7.10909750e-004 ns 0 s 1.00192 -40 dB 32248 643725 2.208736650e-008 ns 2.208736650e-008 ns
CAD preparation time: Matrix calculation time: Solver setup time: Solver loop time: Solver post-processing time:	1 s 434 s 252 s 1727 s 259 s
Total solver time:	2673 s (=0h, 44m, 33s)

Nearfield Results

BRDF Result

- ► The BRDF can be extracted from the farfield data
- Comparison for various surface roughness levels shows expected transition from specular to diffuse reflection

Example: Photonic Crystal Microcavity

Ref: Tuning the resonance of a photonic crystal microcavity with an AFM probe *Iwan Märki, Martin Salt and Hans Peter Herzig,* OPTICS EXPRESS 2969 *Vol. 14, No.* 3 April 2006

Geometry Details

- ► Triangular photonic crystal of cylindrical holes in a thin Si membrane
 - \triangleright layer thickness = 205 nm
 - ⊳ period = 520 nm
 - ▷ hole radius = 182 nm
- The Bragg reflectors embedded in the photonic crystal waveguide and has a length of 400 nm (distance between the two Bragg reflectors). The design parameters of the Bragg reflectors:
 - \triangleright hole width = 350 nm,
 - \triangleright hole length = 150 nm,
 - ▷ Bragg period =380 nm

Define Boundary and Symmetry

- ► Under the Simulation ribbon set up the boundaries
- Boundaries open in all directions
- Symmetry Planes as shown

2	Boundary Conditions	3 Joundary Conditions	
	Boundaries Symmetry Planes	Boundaries Symmetry Planes	
	Apply in all directions Xmin: open Xmax: open ✓ Ymin: open ✓ Ymax: open ✓	YZ plane: none ~ XZ plane: electric (Et = 0) ~	
	Zmin: open Vinder Zmax: open Vinder Cond.: 1000 S/m Open Boundary	XY plane: magnetic (Ht = 0) ~	Y Z x
	OK Cancel Help	OK Cancel Help	

Simulation Results

Dielectric waveguide (launch) is operated at the bandgap of photonic crystal, where wave can propagate without much interaction.

V/m (log)

0.

Time Domain Results

Time domain approach: slow energy decay due to resonant behavior of the structure

- Alternative approach: Frequency Domain solver
 Increased memory usage but factor results
 - ▷ Increased memory usage but faster results

Q-Factor calculation from S-Parameter (F solver)

Execute Measure Resonances and Q-values from freq-data macro to calculate Q factor from S2,1

$$Q_n = \frac{f_n}{\Delta f_{3dB}}$$

Example: Metal-Insulator-Metal Plasmon Coupling Diffraction Gratings

Ref: Efficient optical coupling into modes with subwavelength diffraction gratings, Michael J. Preiner, Ken T. Shimizu, Justin S. White, and Nicholas A. Melosha. APPLIED PHYSICS LETTERS 92, 113109 2008

Geometry/Unit Cell Details

© Dassault Systèmes | Confidential Information | 5/11/2020 | ref:: 3DS_Document_2019

Load Materials from Library

- Switch to the **Modelling** tab
- Select Load from Library...
- Find and load Silver and Gold in the Load from Material Library dialog

	Material /	Туре	Location	1
0	Aluminum (optical)	Normal	C:\Program Files (x86)\CST Library Extensions\Materials	
,	Copper (optical)	Normal	C:\Program Files (x86)\CST Library Extensions\Materials	
,	Gold (Johnson) (optical)	Normal	C:\Program Files (x86)\CST Library Extensions\Materials	
,	Gold (Palik) (optical)	Normal	C:\Program Files (x86)\CST Library Extensions\Materials	
,	Indium Tin Oxide (optical)	Normal	C:\Program Files (x86)\CST Library Extensions\Materials	
,	Nickel (optical)	Normal	C:\Program Files (x86)\CST Library Extensions\Materials	l
,	Silicon (optical)	Normal	C:\Program Files (x86)\CST Library Extensions\Materials	
,	Silicon (optical IR)	Normal	C:\Program Files (x86)\CST Library Extensions\Materials	
,	Silicon Amorphous (optical)	Normal	C:\Program Files (x86)\CST Library Extensions\Materials	~
			Find Rename Delete	

Specify Boundary and Excitation Condition

Specify boundary conditions, scan angle and Floquet port boundaries

 \sim

- Select **Boundaries** in the Simulation Tab
- Set the **Boundaries** settings as shown
- Switch to the Floquet Boundaries window
- Change the **Number of Floquet modes**
- Change the **Phase Shift/Scan Angles** settings

	Settings for Floquet E	oundaries	4		;
8	Properties				ОК
	Edit Floquet port:	Zmax ~	Number of Floquet modes:	2 🔺	Cancel
	Distance to reference plane:	0.0	Polarization independent of scan angle phi:	0.0	Help Details >>

Boundar	Conditions				×
Boundar	es Fhase Shift/Scar	n Angles	Unit Ce	ell	
Арр	ly in all directions				
Xmin:	unit cell	~	Xmax:	unit cell	<
Ymin:	unit cell	\sim	Ymax:	unit cell	~
Zmin:	electric (Et = 0)	~	Zmax:	open (add space	e) ~
Cond.:	1000		S/m	Floquet Boun	idaries
				3	
		0	Ж	Cancel	Help

2

Boundary Co	onditions	5
Boundaries	Phase Shift/S	Scan Angles Init Cell
X : 0.0	Deg.	Scan Angles:
Y: 0.0	Deg.	Theta: 53 Deg.
Z: 0.0	Deg.	Phi: 0.0 Deg. O Inward
		OK Cancel Help

ŦŦ.

Start the Frequency Domain Solver

roadba	nd sweep:			Store	result data	a in cache		Start
Genera	l purpose		\sim		ate port m	odes only		Close
1esh ty	Pro	operties.		Norma	lize S-para	ameter to	,	Apply
Tetrah	edral		~	50		Ohm		Optimizer
								Day Cu
kcitatio Gource All+Flo	n type: Mod quet V All	le:	~		Sele	ect		Par. sweep. Acceleration. Specials
citatio ource All+Flo equen Active	n type: Mod quet V All cy samples	Adapt.	✓ Samples	From	Sele	ect		Acceleration. Specials Simplify Model
kcitatio Gource All+Flo requen Active	n type: Mod quet V All cy samples Type Max.Range	le: Adapt.	 ✓ Samples 	From 400	Sele To 416	Unit	^	Par. Sweep. Acceleration. Specials Simplify Model Domains
kcitatio iource i All +Flo requent Active	n type: Mod quet V All cy samples Type Max.Range Monitors	le: Adapt.	Samples	From 400 416	Sele To 416 416	Unit THz THz	^	Par. sweep. Acceleration. Specials Simplify Model Domains Help
kcitatio Gource 1 All +Flo requent Active	n type: Mod quet V All cy samples Type Max.Range Monitors Automatic	le: Adapt.	Samples	From 400 416	Sele To 416 416	Unit THz THz THz	^	Par. Sweep. Acceleration. Specials Simplify Model Domains Help
All +Flo equent Active	n type: Mod quet V All cy samples Type Max.Range Monitors Automatic Automatic	Adapt.	Samples	From 400 416	Sele To 416 416	Unit Unit THz THz THz THz	^	Par. Sweep. Acceleration. Specials Simplify Model Domains Help

Field Results

Results: Plasmon is generated in dielectric layer when polarization of the field is in parallel to the plane of incident

Convert Parametric Data to 2D Colormap

- Select newly created results
- Run Macros \rightarrow Results \rightarrow Tables \rightarrow Create 2D Colormap Plot from Parametric Data

Plasmon coupling efficiency enhances as incident angle of the plane wave and grating width increase.

Example: Silicon Waveguide Based TE Mode Converter

Ref: Silicon waveguide based TE mode converter *Jing Zhang*,* *Tsung-Yang Liow, Mingbin Yu, Guo-Qiang Lo, and Dim-Lee Kwong,* OPTICS EXPRESS *VOLUME* 18, *NUMBER* 24 18 Nov. 2010

Port Information

► Dielectric Waveguide Modes are usually dispersive

▷ mode pattern and the effective dielectric constant vary with frequencies.

► Needs to be taken into account during port mode calculation for accurate results

Simulation Results

High mode conversion rate (ranging from 88 % to 98 %) over frequencies is observed.

Field monitor results at λ =1550nm

2019

Example: Convex Microlens Simulation

Geometry Details

► Simple Geometry: Spherical lens (n=1.7) with plane wave illumination

S DASSAULT

Planewave

E-field vector (x= 1, y= 0, z= 0) Plane normal (x= 0, y= 0, z= 1) Plane Wave Linear polarization

Simulation Details

totic Solver Parameters	×	
settings	Asymptotic Special Settings	2
Bistatic scattering Store results as tables only	Solver Mesh Diffraction Ray storage Hotspots Field Source Other	
vacy: Custom V Settings	Ray sampling	
num number of intersections: 3 Calculate field monitors	Ray tracer type: SBR Raytubes V	
ation Frequency Sweeps Excitation Angle Sweeps Observation Sweeps	Ray spacing in wavelengths: 0.7	
e Etheta Re Etheta Im Ephi Re Ephi Im ^ Add	Minimum number of rays: 1000	
ontal 0 0 1.0 0 Edit	Adaptive ray sampling	
Delete	Maximum ray distance in wavelengths: 1.5	
	Minimum ray distance in wavelengths: 0.015	;
	3 Consider lossless dielectric materials	
	Ray tracing control	
	Limit number of transmissions: -1	
Bistatic Scattering Analysis, source from single	Limit number of reflections: -1	
direction	Limit ray length:	
 Asymptotic Solver: Shooting Bouncing Rays 		
Dielectrics taken into account via Spell's law	OK Cancel Default	s Help

2

Results

- ► Rays show focusing effect
- ► Ray colors indicate number of reflections
- ► Focal point position agrees with analytic calculations

Conclusion

Conclusion

Optical/photonic problems pose their own challenges due to scale and material properties

- ► Metals and Dielectrics often exhibit fundamentally different behaviors
- A variety of different solver technologies should be employed for efficient simulations

Thank you for your attention! Questions?

